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Embedding of free field and Atiyah property
Theorem (T. Mai, R. Speicher, Y., 18)
Let X = (X1, . . . ,Xn) be a tuple of selfadjoint random variables in a
tracial W ∗-probability space (M, τ) s.t. δ?(X1, · · · ,Xn) = n, then

1 for any linear full A ∈ MN(C 〈x1, . . . , xn〉), A(X ) has no zero divisors;
2 for any r ∈ C (<x1, . . . , xn )>, r(X ) is well-defined as an invertible

unbounded operator;
3 for any A ∈ MN(C 〈x1, . . . , xn〉),

ρ(A) = rankA(X ) := (TrN ⊗τ)(pim A(X)).

Recall
A variant (non-microstates) free entropy dimension (A. Connes and D.
Shlyakhtenko, 05):

δ?(X1, · · · ,Xn) := n − lim inf
t↘0

tΦ∗(X1 +
√
tS1, · · · ,Xn +

√
tSn).
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Embedding of free field and Atiyah property
Theorem (T. Mai, R. Speicher, Y., 18)
Let X = (X1, . . . ,Xn) be a tuple of selfadjoint random variables in a
tracial W ∗-probability space (M, τ) s.t. δ?(X1, · · · ,Xn) = n, then

1 for any linear full A ∈ MN(C 〈x1, . . . , xn〉), A(X ) has no zero divisors;
2 for any r ∈ C (<x1, . . . , xn )>, r(X ) is well-defined as an invertible

unbounded operator;
3 for any A ∈ MN(C 〈x1, . . . , xn〉),

ρ(A) = rankA(X ) := (TrN ⊗τ)(pim A(X)).

Remark
The second property is known for free groups. Namely, the free field can
also be generated by the generators of free groups (P. Linnell, 93).
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Embedding of free field and Atiyah property
Theorem (T. Mai, R. Speicher, Y., 18)
Let X = (X1, . . . ,Xn) be a tuple of selfadjoint random variables in a
tracial W ∗-probability space (M, τ) s.t. δ?(X1, · · · ,Xn) = n, then

1 for any linear full A ∈ MN(C 〈x1, . . . , xn〉), A(X ) has no zero divisors;
2 for any r ∈ C (<x1, . . . , xn )>, r(X ) is well-defined as an invertible

unbounded operator;
3 for any A ∈ MN(C 〈x1, . . . , xn〉),

ρ(A) = rankA(X ) := (TrN ⊗τ)(pim A(X)).

Recall
For a matrix A ∈ MN(C 〈x1, · · · , xn〉), its inner rank ρ(A) is the least
r ∈ N s.t. ∃P ∈ MN,r (C 〈x1, · · · , xn〉), Q ∈ Mr ,N(C 〈x1, · · · , xn〉) satisfying
a factorization

A = PQ.
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Embedding of free field and Atiyah property

Theorem (T. Mai, R. Speicher, Y., 18)
Let X = (X1, . . . ,Xn) be a tuple of selfadjoint random variables in a
tracial W ∗-probability space (M, τ) s.t. δ?(X1, · · · ,Xn) = n, then

1 for any linear full A ∈ MN(C 〈x1, . . . , xn〉), A(X ) has no zero divisors;
2 for any r ∈ C (<x1, . . . , xn )>, r(X ) is well-defined as an invertible

unbounded operator;
3 for any A ∈ MN(C 〈x1, . . . , xn〉),

ρ(A) = rankA(X ) := (TrN ⊗τ)(pim A(X)).

Remark
If additionaly A is self-adjoint, then for any λ ∈ R

1− rank(λ1N − A(X ))
N = trn⊗τ(pker(λ1N−A(X))) = µA(X)(λ)
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Embedding of free field and Atiyah property

Theorem (T. Mai, R. Speicher, Y., 18)
Let X = (X1, . . . ,Xn) be a tuple of selfadjoint random variables in a
tracial W ∗-probability space (M, τ) s.t. δ?(X1, · · · ,Xn) = n, then

1 for any linear full A ∈ MN(C 〈x1, . . . , xn〉), A(X ) has no zero divisors;
2 for any r ∈ C (<x1, . . . , xn )>, r(X ) is well-defined as an invertible

unbounded operator;
3 for any A ∈ MN(C 〈x1, . . . , xn〉),

ρ(A) = rankA(X ) := (TrN ⊗τ)(pim A(X)).

Remark
These three properties are actually equivalent without assumption on X .
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Strong Atiyah property

Definition
Let X = (X1, . . . ,Xn) be a tuple of operators in a finite von Neumann
algebra (M, τ). If for any N ∈ N, A ∈ MN(C 〈x1, . . . , xn, x∗1 , · · · , x∗n 〉),

rankA(X ) ∈ N ∩ [0,N],

then we say X has the strong Atiyah property.

Remarks
A tuple X = (X1, · · · ,Xn) has the strong Atiyah property if

X is the tuple of generators of free groups (P. Linnell, 93).
X is a tuple of freely independent normal random variables without
atoms (D. Shlyakhtenko and P. Skoufranis, 15).
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Strong Atiyah property

Definition
Let X = (X1, . . . ,Xn) be a tuple of operators in a finite von Neumann
algebra (M, τ). If for any N ∈ N, A ∈ MN(C 〈x1, . . . , xn, x∗1 , · · · , x∗n 〉),

rankA(X ) ∈ N ∩ [0,N],

then we say X has the strong Atiyah property.

Remarks
Strong Atiyah property is equivalent to: for any N ∈ N,
A ∈ MN(C 〈x1, . . . , xn, x∗1 , · · · , x∗n 〉)

rankA(X ) = ρR(A(X ))

where R is the rational closure of X .
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Application to block-structured random matrices
X(N) and Y(N) are two independent Wigner random matrices with
Bernoulli distributed entries
Let

A =
(
y2 yxy
yxy yx2y

)
=
(
y
yx

)(
y xy

)
,

then

ρ(A) = 1 and ρ(λ−A) = 2,∀λ 6= 0.

Histogram of eigenvalues of a sam-
ple A(X(N),Y(N)) with N = 1000
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Application to block-structured random matrices
X(N) and Y(N) are two independent Wigner random matrices with
Bernoulli distributed entries
Let

A =
(

(y − 5)2 (y − 5)(x + 5)(y − 5)
(y − 5)(x + 5)(y − 5) (y − 5)(x + 5)2(y − 5)

)
,

then

ρ(A) = 1 and ρ(λ−A) = 2,∀λ 6= 0.
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Central eigenvalues/atoms and where to find them
Definition (P. Cohn)
For a matrix A ∈ MN(C 〈x1, · · · , xn〉), λ ∈ C is called a central eigenvalue
if λ1N − A is not full, or equivalently, λ1N − A is not invertible over
C (<x1, · · · , xn )>. Let σc(A) denote the set of central eigenvalues of A.

Proposition (P. Cohn, 85)
For any A ∈ MN(C 〈x1, · · · , xn〉),

|σc(A)| ≤ N.

Proposition (T. Mai, R. Speicher, Y., 18)
For any A = A0 + A1x1 + · · ·+ Anxn ∈ MN(C 〈x1, · · · , xn〉),

σc(A) ⊆ σ(A0).

Moreover, if A− A0 is full, then σc(A) = ∅.
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Thank you!
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